
COGWAS – A system for mapping genotypes to phenotypes 
Patent 1 - First order nucleotide importance for a phenotype 
 
Research Background : 
The tool provides a novel methodology and system for Genome Wide Association Studies 
(GWAS). In this work, we create large scaled multiprocessing systems which can map 
genotypes to phenotypes. Phenotypes are defined as observed physical attributes of an 
organism. Within a specie, phenotypes differ between multiple organisms due to the genotype, 
which is defined as the gene sequence of the organism. Finding mapping between genotypes 
and phenotypes is the holy-grail of biology due to the following reasons: 

1. Generate novel causal hypothesis regarding biological pathways that affect physical 
trait of the organism. 

2. Results of GWAS can be used to predict an individual’s biological proclivity towards 
certain diseases through their gene sequence. For example, this can be used to predict 
future diseases that a new born child might have. 

3. Genes which have a considerable effect on phenotype can be used to engineer crops 
with desired properties. 

 
This tool maps genotype to phenotype, by taking VCF files as input. The tool then transforms 
the VCF file into a suitable format for generating the probability with which each position in 
the genome affects the target phenotype 
 
Claims: 
The core problem which GWAS addresses is that gene sequence is very large and it is not 
clear which part of the gene or which alleles in the gene are responsible for which phenotype. 
The solution for this problem involves reducing the number of ‘candidate alleles’ which have 
a correlation with the phenotype. In prior-art, p-value is used as a metric to shortlist a set of 
causal genes that affect phenotype. In our system, we present the following claims: 
 

1. We formulate a new metric for quantifying the goodness of a candidate allele to be 
correlated with phenotype. 

2. We provide a methodology that evaluates the individual allele goodness 
quantification method by using the top k such candidates produced by the method, 
build a prediction model only using those features and compare the accuracy of the 
prediction. 

3. Our approach in claim 1 is shown to be doing significantly better than p-value (the 
prior art) w.r.t. the method proposed in claim 2. 

4. We have also come up with a very efficient and scalable pipeline using big-data 
computing for compressing the traditional data into a binary format, generating the 
candidate scores, and evaluating the top candidates efficiently. 

 
 
 
 
 
 
 
 



Part 1 – The new measure for goodness of an allele: Single Loci Relevance Calculation 
This stage of the patent calculates the importance of each position in terms of probability of its 
presence in the strains that show a particular phenotype. 
A phenotype is a physical trait such as leaf length, grain weight etc. and is a continuous 
variable. We convert the value of phenotype into a binary variable, 0 or 1. This was performed 
by strategically choosing a threshold value for the phenotype, and all the strains with a desired 
trait having larger value than the threshold were considered 1 (or positive sample) and the rest 
as 0 (or negative samples). This method can also be reversed if the desired trait has a smaller 
magnitude, hence, samples with phenotype less than a threshold can also be considered as 1 
(or positive sample). 
All the samples are then aligned together for the process of calculating probabilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above process is implemented by aligning individual NumPy files into a single NumPy 
matrix by their POS ID. Final matrix is of shape L*M*3, where L is the length of reference 
genome and M is the total number of samples having positive phenotype and negative 
phenotype, M = P+N. 

 
Fig 2 – Illustrated counting algorithm for 2 samples 

 
Before further processing the count matrix, POS_IDs where 80% of the columns are unfilled 
are dropped. 
 
 

Fig 1 - Alignment of multiple strains of the rice 
genome. Each row in the figure is a position in 
the rice genome and each column represents a 
strain. For each position in each row, there can 
be three values GT1, GT2 or GT3. 
𝑌" describes the phenotype value, 0 or 1. 
  

ℓ 

𝒀𝒉 = 𝟏 𝒀𝒉 = 𝟎 



We calculate COGWAS probability scores for quantifying the relevance of singleton locus. 
The first step to calculate the score is to calculate the counts of GT values at each position.  
We calculate 6 set of counts for each position 
 

 
 
 
 
 
 

Figure 3 – counts for GT1 Genotype. 
𝑔1	at	position	ℓ	is	highly	relevant	for	phenotype	ℎ, 	if	both	𝑃(𝑋ℓ = 𝑔1|𝑌" = 1)	and 

𝑃(𝑋ℓ ≠ 𝑔1|𝑌" = 0) are high 
 
 
Using the counts mentioned in Figure 3, we calculate COGWAS Score for each Genotype for 
each position by finding probabilities for each genotype 
 

𝑃(𝑋ℓ = 𝑔1|𝑌" = 1) =
𝑛(𝑋ℓ = 𝑔1, 	𝑌" = 1) 

𝑛(𝑌" = 1)  

 

𝑃(𝑋ℓ ≠ 𝑔1|𝑌" = 0) =
𝑛(𝑋ℓ ≠ 𝑔1, 	𝑌" = 0) 

𝑛(𝑌" = 0)  

 
We further use these probability scores to generate a COGWAS score  
 

𝑆",G = max	(𝑆",G(gJ), 𝑆",G(gK), 𝑆",G(gL)) 
 
 

 
Figure 4 - 𝑆",G is calculated for each position 𝑙 for each genotype 𝑔J, 𝑔K	𝑎𝑛𝑑	𝑔L 

 
 
 
 

 𝑋ℓ = 𝑔1 𝑋ℓ ≠ 𝑔1 𝑋G = 𝑔J, 𝑔K, 𝑔L 

𝑌" = 1 𝑛(𝑋ℓ = 𝑔1,𝑌" = 1) 𝑛(𝑋ℓ ≠ 𝑔1,𝑌" = 1) 𝑛(𝑌" = 1) 

𝑌" = 0 𝑛(𝑋ℓ = 𝑔1,𝑌" = 0) 𝑛(𝑋ℓ ≠ 𝑔1,𝑌" = 0) 𝑛(𝑌" = 0) 



Part 2 – The method of evaluating the measure of goodness 
 
The scores calculated from COGWAS are stored in a master table. Top-k positions from the 
master table are chosen to train classifier models, where the input is loci GT value and the 
output is phenotype. The pipeline uses Grid Search algorithm to generate optimized 
hyperparameters in a multiprocessing fashion. Classifier is then further trained using these 
optimized hyperparameters. Multiple measures of goodness can be compared by looking at 
the classifiers’ accuracy metrics. 
 
 

 
Figure 5 – Flowchart for evaluation of measure of goodness 

 
Part 3 – Comparison of COGWAS and p-value results on Rice genome 
 
Current State of the Art Genome Wise Association Tools such as PLINK use p-values for 
hypothesis testing. We also calculate p-values using chi-squared test using the three 2X2 
contingency matrix shown in figure 4. To calculate p-values using chi squared test, we 
implement the chi2_contingency tool in the SciPy. Stats library in a multiprocessing fashion. 
We compare COGWAS score and P-value by training classifier algorithms for multiple K 
values. 
 



Figure 6 - Comparison of COGWAS score and p-value for multiple k positions by training 
decision tree classifier 

 
COGWAS score consistently outperforms p-value scores on the test set. 
Since K is a hyperparameter, various experiments were performed by taking different values 
of K and checking which of them are sufficiently able to predict the phenotype. We performed 
this process by creating a master table, where the rows are sample and columns are SNV 
positions. To create the master table, we choose K to be fairly large. Then, we vary k from 100 
to 1000 at intervals of 100, and for each value of K, we train a decision tree classifier. For 
example, if K = 100, we select top 100 positions for the 3000 rice genomes, create a feature 
list of GT values for each sample and keep the target variable as phenotype Boolean. Then for 
each K, a grid search is performed which helps to find the maximum accuracy the decision tree 
can provide while taking only k features as input.  
In the Figure-7, decision tree gives fairly high accuracy for 400 top positions. Therefore, we 
run the following pipeline with k = 400. 
We were able to reduce the search space for important gene locations from 4M to 400. 
 

 
 
 
 
 
 

Figure 7 – Test Accuracy of decision 
tree on k-positions 

 
 

 
 
 

Once all the ‘Single Nucleotide Variations (SNVs)’ are scored, either through COGWAS 
scoring or through chi squared p-values, the SNVs are sorted according to their scores. 
 



Part 4 – The big-data pipeline to solve the problem end-to-end 
 
Data Processing and Compression Algorithm 
3000 Variant Call format files for rice were extracted from https://www.irri.org/ 
Each of the VCF files come with a metadata which contains the phenotype information. We 
chose 57 phenotypes, hence, every VCF file is annotated with 57 phenotypes and the unit with 
which corresponding phenotype is measured in. For e.g. – Leaf width (in cms) and Seed Length 
(in mms) 
VCF files are memory heavy, each VCF file takes up 25 Gb. Performing computation on these 
raw VCF files is challenging. So, we reformat and compress the VCF files for further extensive 
computation.  
Since we perform comparative analysis, we extract, from each VCF file, only the POS ID, Qual 
and GT. Following describes the three column headers: 

1. POS ID – This column contains the position of each nucleotide. For e.g., since on an 
average, a rice genome consists of 4M base pairs, the values in the column range from 
1 to 4M in a sorted manner. Some rows only have a POS ID and no GT value, which 
means that during the sequencing process, this position either had low quality value or 
an instrumentation error.  

2. Qual – This column describes the quality score which quantifies how confident the 
sequencing instrument is about the nucleotide value for each position.  

3. GT – This column describes any mutation present in the position. This mutation is 
compared to the reference rice genome. For e.g., if GT value for a sample POS ID is 
0/0, this describes that the nucleotide at this POS ID for this sample is same as that of 
the reference genome. 

 
Data Pre-Processing: 

1. We filter out POS ID values with missing GT or Qual values for further analysis.  
2. As a threshold, we filter out POS ID where Qual >=30. 
3. We encode the GT value with its corresponding encoding shown below 

 
GT Value GT Value encoded GT name 
0/0 0 gt1 
1/0 or 0/1 1 gt2 
1/1 2 gt3 

4. We drop other columns from the VCF files. 
5. GT values are one-hot encoded and bitwise transformed to NumPy format 
 

 
Fig 8 – Transformation of VCF file to Bitwise NumPy format 



 
Due to large number of files, we perform the above compression in a multiprocessing manner. 
We divide 3000 files into 50 buckets, one for each core. We use 60 cores simultaneously for 
data compression. For each VCF file, one NumPy file is generated. 
 

 
 
Figure 9-Flowchart for calculating first order nucleotide importance for a phenotype 



 
 
 

 
Figure 10 – Master Table creation stage 

 
Post shortlisting of the top 400 loci with significant contribution to Phenotype, we create Entity 
table and Vocabulary table for COGWAS and P-value scores 
 
Entity Table -  
The table represents top-K position selected for each sample 

 
 
 
 
 



Vocabulary Table –  
Top-K positions were queried against BLAST database for rice genome to convert position to 
gene names 

 
 
 


