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Introduction:

Compression techniques are generally used to handle a large 
amount of data. The compression methods reduce the storage 
space and increase the data circulation(e.g. among peers or 
research institutes). The compression technique owes its origin to 
Claude E Shannon’s 1948 paper ‘A Mathematical Theory of 
Communication’ in which he formulated the theory of data 
compression. Nowadays data compression is used almost 
everywhere as the amount of data stored and transmitted is huge.

With the advancement in sequencing technology the cost of 
sequencing has seen a huge fall in terms of cost. Companies like 
Illumina offer whole genome sequencing for as less as five thousand
US dollars. The sequence dataset of large scale projects like 1000 
genome projects, which aim at sequencing the genomes of several 
thousand humans and determining the genetic variants with at 
least 1% frequency, contains around 6 trillion base pairs.  Along 
with humans, other species’ genomes are also being sequenced. 
The large amount of data produced by sequencing methods makes 
it difficult to store and transfer the data. In 2013, Beijing Genomics 
Institute used 188 sequencers to produce ~3 PB of raw sequencing 
read files.  The additional output space for mapping to the reference
genomes take additional 7 PB of space. While the sequencing 
techniques have seen a rapid growth, the space required for storing
has not been able to keep the pace. As seen in figure 1, the cost of 
sequencing a single base has been halving every 8 months in 2008-
2013 while the cost of hard disk has been halving every 25 months. 
The cost of storing data in cloud storage, though more reliable, is 
more than the cost of storing in HDD. The trends show that the cost 
of storage and transfer is becoming comparable to the cost of 
sequencing and IT costs will be a significant obstacle in near future. 



Fig 1:Image from Data Compression for Sequencing data, Sebastian Deorowicz and
Szymon Grabowski,Algorithms for Molecular Biology,2013

A code is an assignment of bit strings to symbols present in the 
data such that the strings can be decoded without any ambiguity to
recover the original data. Compression involves encoding 
information using codes that have fewer bits than the original 
representation. It is the art of reducing the number of bits needed 
to store or transmit data.

An example of compression lies in Morse Code. Each letter of the 
alphabet  of English language is assigned a code made up of dots 
and dashes. The most frequent letters like E and T receive the 
shortest code while the least common like Q, Z are assigned the 
longest codes. This ensures that the information is transferred using
least number of dots and dashes.



Compression:

1. Compression involves encoding(changing data 
representation) information using codes that have 
fewer bits than the original representation. 

2. It is the art of reducing the number of bits needed to 
store or transmit data.

Compression Algorithms:
Compression algorithms are techniques that exploits data 
redundancy ( repetion in data ) to reduce the size of the 
data representation. To encode data, we need the encoding 
representation of each character in data.

Types of Data Compression:

• Lossless: 
Lossless data compression algorithms usually exploit
statistical redundancy to represent data without 
losing any information, so that the process is 
reversible. Lossless compression is possible 
because most real-world data exhibits statistical 
redundancy.
Example: Example of Red, Red,Red, Blue can be 
represented as 4R1B (no loss in data)

• Lossy: 
In these schemes, some loss of information is 
acceptable. Dropping nonessential detail from 
the data source can save storage space.



Entropy Encoding:

• Entropy coding is a type of lossless coding to compress 
digital data by representing frequently occurring patterns 
with few bits and rarely occurring patterns with many bits. In 
simple terms, Entropy is a measure of information per byte.

• Two of the most common entropy encoding techniques are:
1)Huffman coding
2)Arithmetic coding.

Burrows-Wheeler Transform:

The Burrows–Wheeler transform (BWT) rearranges a character 
string into runs of similar characters. This is useful for 
compression, since it tends to be easy to compress a string that has
runs of repeated characters by techniques such as move-to-front 
encoding

It is an algorithm that permutes the given input in such a way that 
Compression Algorithms can compress the string better. It is not 
specific for next gen sequencing but can be used with any type of 
data.

BWT rearranges the characters in the input so that there are lots of
blocks with repeated characters. Its goal is to ‘apply a reversible 
transformation to a block of text to form a new block that contains
the same characters but is easier to compress by simple 
compression algorithms. This transformation group characters 
together so that the probability of finding a character close to 
another instance of the same character is increased substantially .



Move-to-Front Encoding:

The move-to-front (MTF) transform is an encoding of data 
designed to improve the performance of entropy encoding 
techniques of compression. When efficiently implemented, it is 
fast enough that its benefits usually justify including it as an extra 
step in data compression algorithms.

The MTF transform takes advantage of local correlation of 
frequencies to reduce the entropy of a message. Indeed, recently 
used letters stay towards the front of the list; if use of letters 
exhibits local correlations, this will result in a large number of 
small numbers such as "0"'s and "1"'s in the output.

Huffman Encoding:

Huffman coding is a lossless data compression algorithm. The 
idea is to assign variable-legth codes to input characters, lengths 
of the assigned codes are based on the frequencies of 
corresponding characters. The most frequent character gets the 
smallest code and the least frequent character gets the largest 
code.





Example of Compression:

Let the input file contain the string “compression”.

Below we dicuss how the compression algorithms transforms the 
given input to produce final output.

Burrows-Wheeler Transorm:

Input: compression         Output: npsoocimpse
Steps Involved: 
1) Cyclic permutations
2) Sort
3) Last column of BWT matrix is output.

0 compression

1 essioncomp

2 ioncompress

3 mpressionco

4 ncompressio

5 ompressionc 

6 oncompressi

7 pressioncom

8 ressioncomp

9 sioncompres

10 ssioncompre



Move-to-Front Transform:

Input:  npsoocimpse (o/p of BWT)  
Output: [4,7,8,7,0,4,6,7,8,5,8]

index L[ index 
]

Y
(Lexically sorted set
of all characters of

input string)
[0 1 2 3 4 5 6 7 8]

R

0 n [c e i m n o p r s] [4]

1 r [n c e i m o p r s] [4,7]

2 s [r n c e i m o p s] [4,7,8]

3 o [s r n c e i m o p] [4,7,8,7]

4 o [o s r n c e i m p] [4,7,8,7,0]

5 c [o s r n c e i m p] [4,7,8,7,0,4]

6 i [c o s r n e i m p] [4,7,8,7,0,4,6]

7 m [i c o s r n e m p] [4,7,8,7,0,4,6,7]

8 p [m i c o s r n e p] [4,7,8,7,0,4,6,7,8]

9 s [p m i c o s r n e] [4,7,8,7,0,4,6,7,8,5]

10 e [s p m i c o r n e] [4,7,8,7,0,4,6,7,8,5,8]



Huffman Encoding:

Input: [4,7,8,7,0,4,6,7,8,5,8] ( O/P of MTF transform)
Output: 

R Huffman Code

0 0110

4 00

5 0111

6 010

7 10

8 11

Output File:

Results 

The compression ratio achieved by Burrows-Wheeler Transform 
have been compared against the compression achieved by gzip. 
Gzip is the de-facto compression method used by Unix. 

Input given to software is human genomic data.
The file sizes are in MB. The overhead incurred for the BWT is due to
the dictionary of Huffman codes. Since the dictionary consists of 
just 4 nucleotide characters and their codes, it is negligible and can 
be ignored. 

file:///home/prof/


chromosome Original file
size

BWT( MB) GZIP (MB)

chr1 253.9 69.1 71

chr2 247.0 70.1 75

chr3 202.3 57.5 62

chr4 194.0 55.1 59

chr5 185.2 52.4 56.0

chr6 174.2 45.9 49

chr7 162.5 45.9 49

chr8 148.0 42.0 45

chr9 141.2 37.3 38

chr10 136.5 38.6 41

chr11 137.8 38.8 41

chr12 135.9 38.5 41

chr13 116.7 30.4 30

chr14 109.2 28.2 28

chr15 104.0 26.5 26

chr16 92.1 24.6 25

chr17 84.9 23.6 25

chr18 82.0 22.7 24

chr19 59.8 16.5 17

chr20 65.7 18.38 19

chr21 47.6 12.27 12

chr22 51.8 12.6 12

chrX 159.2 44.7 47

chrY 58.4 11.4 8.0




