
“Reimplementation of Burrows-Wheeler
Transformation for genome wide sequence

data compression “
By

Palash Sethi

Under the Guidance of

Prof. Shandar Ahmad

School of Computational and Integrative Sciences

Jawaharlal Nehru University

New Delhi – 110067

Introduction:

Compression techniques are generally used to handle a large
amount of data. The compression methods reduce the storage
space and increase the data circulation(e.g. among peers or
research institutes). The compression technique owes its origin to
Claude E Shannon’s 1948 paper ‘A Mathematical Theory of
Communication’ in which he formulated the theory of data
compression. Nowadays data compression is used almost
everywhere as the amount of data stored and transmitted is huge.

With the advancement in sequencing technology the cost of
sequencing has seen a huge fall in terms of cost. Companies like
Illumina offer whole genome sequencing for as less as five thousand
US dollars. The sequence dataset of large scale projects like 1000
genome projects, which aim at sequencing the genomes of several
thousand humans and determining the genetic variants with at
least 1% frequency, contains around 6 trillion base pairs. Along
with humans, other species’ genomes are also being sequenced.
The large amount of data produced by sequencing methods makes
it difficult to store and transfer the data. In 2013, Beijing Genomics
Institute used 188 sequencers to produce ~3 PB of raw sequencing
read files. The additional output space for mapping to the reference
genomes take additional 7 PB of space. While the sequencing
techniques have seen a rapid growth, the space required for storing
has not been able to keep the pace. As seen in figure 1, the cost of
sequencing a single base has been halving every 8 months in 2008-
2013 while the cost of hard disk has been halving every 25 months.
The cost of storing data in cloud storage, though more reliable, is
more than the cost of storing in HDD. The trends show that the cost
of storage and transfer is becoming comparable to the cost of
sequencing and IT costs will be a significant obstacle in near future.

Fig 1:Image from Data Compression for Sequencing data, Sebastian Deorowicz and
Szymon Grabowski,Algorithms for Molecular Biology,2013

A code is an assignment of bit strings to symbols present in the
data such that the strings can be decoded without any ambiguity to
recover the original data. Compression involves encoding
information using codes that have fewer bits than the original
representation. It is the art of reducing the number of bits needed
to store or transmit data.

An example of compression lies in Morse Code. Each letter of the
alphabet of English language is assigned a code made up of dots
and dashes. The most frequent letters like E and T receive the
shortest code while the least common like Q, Z are assigned the
longest codes. This ensures that the information is transferred using
least number of dots and dashes.

Compression:

1. Compression involves encoding(changing data
representation) information using codes that have
fewer bits than the original representation.

2. It is the art of reducing the number of bits needed to
store or transmit data.

Compression Algorithms:
Compression algorithms are techniques that exploits data
redundancy (repetion in data) to reduce the size of the
data representation. To encode data, we need the encoding
representation of each character in data.

Types of Data Compression:

• Lossless:
Lossless data compression algorithms usually exploit
statistical redundancy to represent data without
losing any information, so that the process is
reversible. Lossless compression is possible
because most real-world data exhibits statistical
redundancy.
Example: Example of Red, Red,Red, Blue can be
represented as 4R1B (no loss in data)

• Lossy:
In these schemes, some loss of information is
acceptable. Dropping nonessential detail from
the data source can save storage space.

Entropy Encoding:

• Entropy coding is a type of lossless coding to compress
digital data by representing frequently occurring patterns
with few bits and rarely occurring patterns with many bits. In
simple terms, Entropy is a measure of information per byte.

• Two of the most common entropy encoding techniques are:
1)Huffman coding
2)Arithmetic coding.

Burrows-Wheeler Transform:

The Burrows–Wheeler transform (BWT) rearranges a character
string into runs of similar characters. This is useful for
compression, since it tends to be easy to compress a string that has
runs of repeated characters by techniques such as move-to-front
encoding

It is an algorithm that permutes the given input in such a way that
Compression Algorithms can compress the string better. It is not
specific for next gen sequencing but can be used with any type of
data.

BWT rearranges the characters in the input so that there are lots of
blocks with repeated characters. Its goal is to ‘apply a reversible
transformation to a block of text to form a new block that contains
the same characters but is easier to compress by simple
compression algorithms. This transformation group characters
together so that the probability of finding a character close to
another instance of the same character is increased substantially .

Move-to-Front Encoding:

The move-to-front (MTF) transform is an encoding of data
designed to improve the performance of entropy encoding
techniques of compression. When efficiently implemented, it is
fast enough that its benefits usually justify including it as an extra
step in data compression algorithms.

The MTF transform takes advantage of local correlation of
frequencies to reduce the entropy of a message. Indeed, recently
used letters stay towards the front of the list; if use of letters
exhibits local correlations, this will result in a large number of
small numbers such as "0"'s and "1"'s in the output.

Huffman Encoding:

Huffman coding is a lossless data compression algorithm. The
idea is to assign variable-legth codes to input characters, lengths
of the assigned codes are based on the frequencies of
corresponding characters. The most frequent character gets the
smallest code and the least frequent character gets the largest
code.

Example of Compression:

Let the input file contain the string “compression”.

Below we dicuss how the compression algorithms transforms the
given input to produce final output.

Burrows-Wheeler Transorm:

Input: compression Output: npsoocimpse
Steps Involved:
1) Cyclic permutations
2) Sort
3) Last column of BWT matrix is output.

0 compression

1 essioncomp

2 ioncompress

3 mpressionco

4 ncompressio

5 ompressionc

6 oncompressi

7 pressioncom

8 ressioncomp

9 sioncompres

10 ssioncompre

Move-to-Front Transform:

Input: npsoocimpse (o/p of BWT)
Output: [4,7,8,7,0,4,6,7,8,5,8]

index L[index
]

Y
(Lexically sorted set
of all characters of

input string)
[0 1 2 3 4 5 6 7 8]

R

0 n [c e i m n o p r s] [4]

1 r [n c e i m o p r s] [4,7]

2 s [r n c e i m o p s] [4,7,8]

3 o [s r n c e i m o p] [4,7,8,7]

4 o [o s r n c e i m p] [4,7,8,7,0]

5 c [o s r n c e i m p] [4,7,8,7,0,4]

6 i [c o s r n e i m p] [4,7,8,7,0,4,6]

7 m [i c o s r n e m p] [4,7,8,7,0,4,6,7]

8 p [m i c o s r n e p] [4,7,8,7,0,4,6,7,8]

9 s [p m i c o s r n e] [4,7,8,7,0,4,6,7,8,5]

10 e [s p m i c o r n e] [4,7,8,7,0,4,6,7,8,5,8]

Huffman Encoding:

Input: [4,7,8,7,0,4,6,7,8,5,8] (O/P of MTF transform)
Output:

R Huffman Code

0 0110

4 00

5 0111

6 010

7 10

8 11

Output File:

Results

The compression ratio achieved by Burrows-Wheeler Transform
have been compared against the compression achieved by gzip.
Gzip is the de-facto compression method used by Unix.

Input given to software is human genomic data.
The file sizes are in MB. The overhead incurred for the BWT is due to
the dictionary of Huffman codes. Since the dictionary consists of
just 4 nucleotide characters and their codes, it is negligible and can
be ignored.

file:///home/prof/

chromosome Original file
size

BWT(MB) GZIP (MB)

chr1 253.9 69.1 71

chr2 247.0 70.1 75

chr3 202.3 57.5 62

chr4 194.0 55.1 59

chr5 185.2 52.4 56.0

chr6 174.2 45.9 49

chr7 162.5 45.9 49

chr8 148.0 42.0 45

chr9 141.2 37.3 38

chr10 136.5 38.6 41

chr11 137.8 38.8 41

chr12 135.9 38.5 41

chr13 116.7 30.4 30

chr14 109.2 28.2 28

chr15 104.0 26.5 26

chr16 92.1 24.6 25

chr17 84.9 23.6 25

chr18 82.0 22.7 24

chr19 59.8 16.5 17

chr20 65.7 18.38 19

chr21 47.6 12.27 12

chr22 51.8 12.6 12

chrX 159.2 44.7 47

chrY 58.4 11.4 8.0

